CNC Precision Lathe

ULTRA SLIM LATHE USL-480

Ultra Slim Lathe

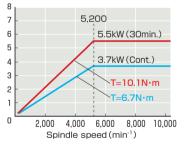
The living environment all around us is ecologically evolving in automobiles, household appliances, and construction. Even in the "mother machines" (machine tools) that form the foundation of any industry, products with "reduced energy consumption", "reduced production installation space", "reduced waste/recycling", and small environmental footprint are in demand. The current situation that production conditions are often long on waste and short of efficiency, such as working with machines with excess production capacity, production with machines just taking up factory space, etc. It is here that we present TAKAMAZ's environmentally-friendly machines. The compact slim lathe "USL-480" achieves the concept of "Small item machining with small machines" in half the space of conventional machines. We promise great benefits in our customer's facility investments through reducing expenses in unseen areas such as fixed land assets, power consumption, etc., while taking maximum advantage of your existing space.

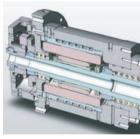
TAKAMAZ

.....

Performance

Stable Balance Produced by the Symmetry^{*} Structure

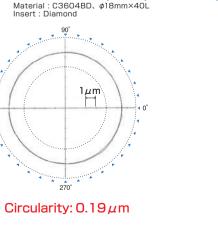

Suppresses thermal displacement, achieving circularity of 0.2μ m, surface roughness of 0.2μ m


This machine was designed with a symmetrical structure, thereby suppressing the relative displacement, and suppressing component elongation due to heat. In addition, by arranging the X- and Z-axes independently of each other, connection was possible with the least distance from the slide surface to the spindle center, and having the ball screw adopt a pre-tension structure leads to stability in machining accuracy. In actual measurement data, the positioning accuracy was marked at $\pm 1 \mu m$ or less, and the repeating accuracy was no more than $1\mu m$.

Pursuing High Accel/Decel Speeds with Built-in Spindle

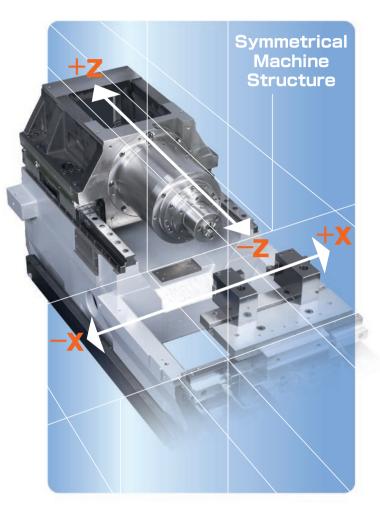
Reductions in non-cutting time were sought with a highresponsiveness spindle structure through shaft inertia optimization and the adoption of dedicated built-in motors. The time from 0 to Max.10.000min⁻¹ was marked at 1 second or less^{**}. In addition, we are pursuing stability in temporal changes by adopting shaft motiontype zero core structure and a structure not prone to influence by heat over time, centering on the shaft. ※ With a precision diaphragm air chuck

Spindle motor output characteristics diagram



Cross Section of Built-In Spindle

Spindle Speed : 10,000min⁻¹ Feed Rate : 0.02mm/rev Stock Removal : 0.2mm(Diameter) Circularity


Temporal Change

"Caring for the environment" is our standard concept.

Spindle Speed : 8.000min The holder is mounted nearby X-axis home Feed Rate : 0.05mm/rev Stock Removal : 0.2mm(Diameter) position Precision Air Chucking Cylinder & Collet Material C3604BD, #18mmx401 20 Sec./Cvcl 60 Min Int 20 Min Int 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Room temperature: 22.5°C ± 2°C Interval Time

esults where the change in the work machining diameter was red after having performed al change cutting test with the "USL-480". The cutting condition ons were as sh and a fast-cut brass rod as the cutting material. In addition ed stops such as worker breaks and tip replacements, etc., thus showing states w s not being performed. Fro this, we can see that the maxi this, we can see that the maximum change in machining diameter at machining diameter after each break was $1\mu m$, achieving an extr neter at 8 hours was , the maximum change of ining accuracy.

*The precision capacity is a value based on multiple conditions. Because these conditions will differ during actual machining, the accuracy capacity will differ accordingly.

Environment

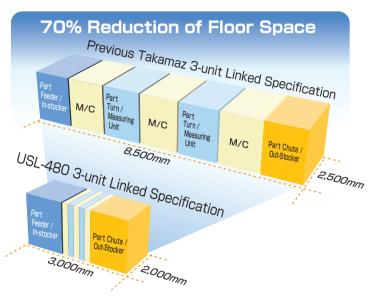
Automation

Environmental Improvements are Connected to Production Rationalization.

Toward a Flexible Line Configuration.

In Pursuit of Space and Energy Use Half that of Previous Machines

•The structure of this machine is a 2-axis structure where a spindle-move axis (Zaxis) and a gang style toolbox (X-axis) intersect perpendicularly. Though this perpendicular structure arrangement* a heretofore unknown body compactness is achieved. In addition. the chip disposability is improved by the vertical



Disposability of cutting chip is improved by the vertical shape.

shape, and is even superior in operator interface, resulting in a design intended to raise productivity.

In the case of the 2-unit linked specification, the horizontal width of a single line can be reduced by about half compared to our previous "J-WAVE Linked Machine" devices, contributing to a reduction in factory installation space. In addition, maintenance points are concentrated at the front and back of the machine, and the possibility of sharing using only one chip conveyor when linked is considered, achieving increases in working efficiency.

*Patent Pending

Holding power was reduced by optimum motor size selection for each unit. In addition, environmental protection has been taken into account by energy savings through miniaturization of the structural components, materials used, reduction of waste, and reduction of startup loss of the rotors.

Equipped with the Newly-developed High-speed Loader "ΣU30"

Ouick switchover from unitary to linked is required f dealing with variable-type, variable-quantity production This device can be easily moved with a forklift, and the loading system is mounted using the top space on the machine, making possible the construction of a high efficiency transport system.

•A loading time of 4seconds, and a minimum cycle time of 10seconds* were achieved through downsizing the transport devices, such as by minimization of the loader transport shaft up/down axis stroke, distance between processes, etc.

Peripheral devices such as various parts feeders, washing/measuring equipment, etc., can be arranged as needed.

* There are situations where the cooling equipment specification may be changed to an according to various conditions such as the spindle

10.4 Inch Color Monitor

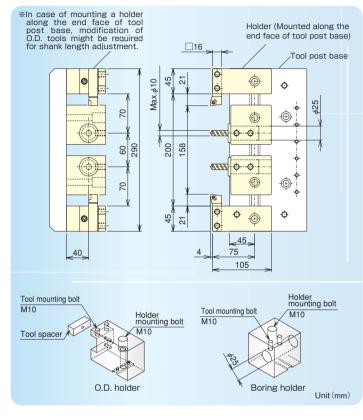
Operability Improved through Touch Panels

In pursuit of improved operability, this machine has adopted touch panel monitors. A tool counter and work counter are integrated, standard, making display possible on the touch panel screen. The operation panel is simple, without the counter boxes attached in earlier models. Chuck OP/CL select /chip conveyor intermittent timer setting, etc., can be performed in the optional setting screen.

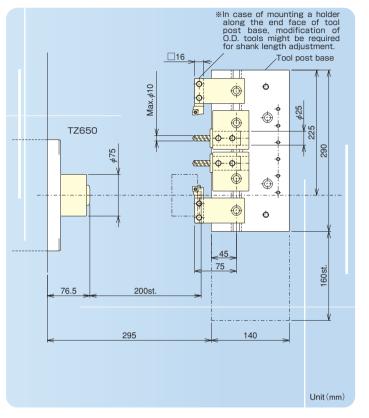
or	
n.	
he	
he	
h-	

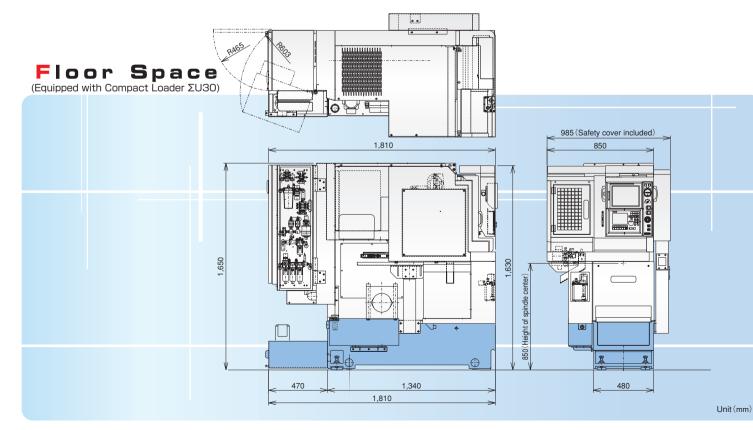
Diameter (Max.) mm φ30 Workpiece dimension Weight (One side) 0.3 kg Drive system Servomotor Shoulder Stroke 645 (Depends on specifications) mm (Traverse axis) Rapid traverse rate 70 m/min Drive system Servomotor Arm Stroke 260 (235 : 2 jaw hand) mm (Vertical axis) 60 Rapid traverse rate m/min Drive system Air cylinder Hand rotation Angle deg. 90

Unit


ΣU30(3 jaw hand)

Loader transfer capacity


Item


Specification

Tooling System

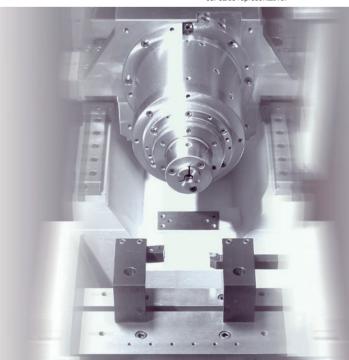
Stroke

Performance Specifications

Machine Specifications

	Item	Unit	USL-480
Capacity	Optimum turning diameter	mm	$\phi 40 \times 50$
	Max. bar diameter	mm	
	Chuck size	inch	Collet/3
	Spindle nose	JIS	A3-S2
	Spindle bearing I.D.	mm	<i>ф</i> 50
	Spindle speed	min ⁻¹	Max.10,000 *1
Fool post	Туре		Horizontal linear (Four tools)
	Tool shank	mm	□16
	Boring holder I.D.	mm	ϕ 25 (Max. Drill Diameter: ϕ 10)
	Max.stroke	mm	X:160 Z:200
	Rapid traverse rate	m/min	X:12 Z:15
Motors	Spindle motor	kW	AC5.5/3.7
Mot	Feed motor	kW	X: ACO.5 Z: ACO.5
Size	Spindle center height	mm	850
	$L \times W \times H$	mm	480 × 1,810 × 1,630
	Machine weight	kg	1,000 (1,300 **2)
Total electric capacity KV		KVA	13
*1 It may vary with specification of chuck type. *2 When the loader is mounted.			

Standard Accessories


□TZ650 collet flange ······· 1set □Tool holder ······ ······ 4sets Spindle cooling unit (Cooling fan) … 1 set

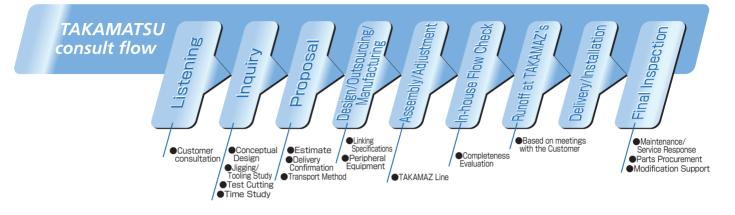
□Tool kit … ···· 1 set □Instruction manuals ············ 1 set

Optional Accessories

□Tool holders TZ650 collet chuck Collet chucks Chuck clamp detector TAKAMAZ loader system Combined system Spindle cooling unit (Thermostat) Spindle indexing device (Electrical) Chip conveyor (Spiral type / Floor type)

□Air blow from front side □Air blow from rear side Cycle end signal light (1-color/2-color/3-color) Coolant unit*1 Breaker Special color □Automatic fire extinguisher Others*2 When a coolant pump is mounted, an auxiliary tank is required.
For more information on attachments, consult our sales representative.

Controller Specifications


Item	TAKAMAZ&FANUC
Controlled axes	2 axes (X, Z)
Simultaneously controllable axes	Simultaneous 2 axes
Least input increment	0.001mm (X in diameter)
Least command increment	X:0.0005mm Z:0.001mm
Auxiliary function	M-code 3 digit
Spindle function	S-code 5 digit
Tool function	T-code 4 digit
Tape code	EIA/ISO automatic recognition
Cutting feedrate	1~5,000mm/min
Command system	Incremental/Absolute
Linear interpolation	G01
Circular interpolation	G02, G03
Cutting feedrate override	0~150%
Rapid traverse override	FO, 100%
Program number	4 digits
Backlash compensation	0~9999µm
Part program storage length	40m
Tool offsets	16 sets
Workpiece/Tool counter	Standard
Registered programs	63 pcs.
Tool geometry/Wear offset	Standard
Canned cycle	G90, G92, G94
Radius designation on arc	Standard
Tool offset measurement input	Standard
Background editing	Standard
Custom macro B	Standard
Nose R compensation	G40, G41, G42
Inch/Metric conversion	G20/G21
Programmable data input	G10
Chamfering / Corner R	Standard
Spindle orientation	G96, G97
Thread cutting retract	G32
Clock function	Standard
Help function	Standard
Alarm history display	50 pcs.
Self-diagnosis function	Standard
Sub-program call	Up to 4 loops
Decimal point input	Standard
2nd reference point return	G30
Stored stroke check 1	Standard
Input/Output interface	RS232C, Memory card
Alarm message	Standard

Optional Controller Specifications I

Additional part program storage lengh	80m · 160m
Additional registered programs	125
Additional tool offset memory	32 sets · 64 sets
Tool life management	
Direct drawing dimension programming	
Run hour / Parts count display	
Extended part program editing	
Multiple repetitive cycle	G70~76
Multiple M codes in one block	Max. 3
Spindle orientation	
Continuous thread cutting	G32
Variable lead thread cutting	G34
Work coordinate system setting	G54~G59
Adnormal load detection	

Engineering Providing Your Company with Optimum Products, Service, and Effort.

As a result of having pursued the increased satisfaction of our various customers, TAKAMAZ 's rate of repeat orders actually reaches 90%. Then, over 80% of the machines we manufacture are machines customized to customer specifications. Product variations are arranged from 3inches to 10inches chuck size in wide range of varieties, and TAKAMAZ considers its mission to be providing products at low prices and short lead times, as well as "Only One" products though customizing to customer needs.

Japan Ishikawa

TAKAMATSU MACHINERY CO., LTD.

- Arrayed at 10 bases nationwide and providing a sales and service system close to regions
- At TAKAMAZ we offer an "NC Schooling" for prospective customers, striving for full factor maintenance

EUrope Germany TAKAMATSU MACHINERY EUROPE OFFICE TAKAMAZ MACHINERY EUROPE GmbH

We are performing sales and service targeted on the and European Russian markets.

Head office & plant Hokuriku office Second. Third plant Development center TAKAMAZ-EMAG Co. I td

Touhoku office

Shinetsu office

Kanto office

Atsugi office

Numazu office

Hamamatsu office

Branch offices Representative offices

Distributed by:

for machine set-up and modification.

Thailand BANGKOK TAKAMATSU MACHINERY (THAILAND) CO. ITD

Our Bangkok base performs sales and service targeted on the Asian market. Facility is capable

America Chicago TAKAMATSU MACHINERY USA Inc.

Our Chicago base performs sales and service targeted on the American market.

nina HANGZHOU HANGZHOU FEELER TAKAMATSU MACHINERY CO., LTD.

We are performing "X-100c" "X-150c" manufacturing, sales and service targeted on the Chinese market.

TAKAMATSU MACHINERY CO., LTD.

- HEAD OFFICE & PLANT 1-8 ASAHIGAOKA HAKUSAN-CITY ISHIKAWA JAPAN. 924-8558 TEL +81-(0)76-274-1403 FAX +81-(0)76-274-8530
- EUROPE OFFICE INDUSTRIEGEBIET, DIEPENBROICH 27 D-51491 OVERATH, GERMANY
- +49 -(0)2206-866-150 FAX +49-(0)2206-865-123
- TEL 1435(0)/2200-606-130 PAX 1435(0)/2200-605-123 CHINA OFFICE 120 SHINXIN NORTH ROAD, XIAOSHAN ECONOMY AND TECHNOLOGY DEVELOPMENT AREA, HANGZHOU, ZHEJIANG PROVINCE, CHINA TEL +86-(0):571-8287-9709 FAX +86-(0):571-8286-5311
- TAKAMATSU MACHINERY USA Inc.

- CHICAGO HEAD OFFICE 1320 LANDMEIER ROAD ELK GROVE VILLAGE, IL 60007 USA TEL +1-(0)847-981-8577 FAX +1-(0)847-981-8599
- 1320 LANDMEIER ROAD ELK GROVE VILLAGE, IL 60007 USA TEL +1-(0/6+7-30, 007, 1.0., 1.0.) CINCINNATI OFFICE 5233 MUHLHAUSER ROAD. WEST CHESTER TOWNSHIP, OH 45011 USA TEL +1-(0)513-870-9777 FAX +1-(0)513-870-0325

TAKAMATSU MACHINERY (THAILAND) CO..LTD.

THAILAND HEAD OFFICE 888/17 MOO 19 BANGPLEE-DAMRU ROAD., BANGPLEEYAI, BANGPLEE, SAMUTPRAKARN 10540 TEL +66-(0)2-382-5372 FAX +66-(0)2-382-5373

TAKAMAZ MACHINERY EUROPE GmbH

■EUROPEAN HEAD OFFICE INDUSTRIEGEBIET, DIEPENBROICH 27 D-51491 OVERATH, GERMANY TEL +49-(0)2206-919-3960 FAX +49-(0)2206-865-123

Specifications and accessories are subject to change without notice. Standard specifications of the machine may differ according to destinations.

